TinyML and Novel AI Workflow Enables Smarter Wireless Low Power Sensors
Managed and Deployed at Large Scale at the Far Edge
Mark Stubbs and Kabir Manghani
Shoreline IoT Inc., 1671 Dell Ave. Suite 208, Campbell, CA 95008

ABSTRACT
Significant challenges prevent large scale deployment of sensors
at the far edge in utilities, industry, energy production,
transportation/infrastructure, and many other applications. For
example, nearly half a billion motors are unmonitored due to
challenges such as large upfront equipment cost, labor intensive
installation, ease of access to power, and cost-effective wide
area communications.

Advances in ML, low power microcontrollers, battery technology,
and narrowband IoT cellular communications have opened the
door to address these large markets. Over the next few years,
the combination of TinyML, low power MCUs, long battery life,
and narrowband cellular IoT networks will lead to an explosion in
deployment of smarter sensors at the far edge providing greater
insights enabling predictive maintenance and process
improvements.

We will present an end-to-end architecture & market ready
Industrial AIoT solution, which includes:

- Peel & Stick sensors, with 5 year battery life which utilizes
 TinyML running on ARM M4 MCU to detect and classify
 conditions at the far edge and communicate important
 events using built-in narrowband cellular modem.
- IoT Cloud platform for management and deployment of a
 large scale network of sensors.
- Novel TinyML AI Workflow to train, build, deploy, and
 adapt TinyML models at scale to millions of sensors with
 tiny MCUs.
- Anomaly detection, rules engine, alerts, and
 notifications handled by the IoT Cloud platform.
- Flexible Model Development Workflows

EXAMPLE PROBLEM – MOTOR HEALTH MONITORING

- 500M+ industrial motors
 - A tiny fraction are actively monitored
 - Motor failure is expensive
- Manual data logging (on-site)
 - $300 to $1,000/machine/year service fees
- Battery powered sensor
 - Still not real-time; streaming data drains battery
 - Still expensive; $500/machine/year cellular data

But how do we train and deploy a network of battery powered
sensors to affordably monitor these assets and achieve very long
battery life?

Enabling the Peel & Stick Battery Powered Sensor

TinyML, specifically Google’s Tensorflow Lite for Microcontrollers,
is a key technological component to enable a long life battery
powered sensor.

Shoreline’s iCast Sense product integrates the TinyML inference
engine with a combination of sensors including:

- 3-axis Accelerometer (vibration)
- Temperature
- Humidity
- MEMs Microphones

In addition, the device includes narrowband LTE wireless and
Bluetooth low energy.

Sensors are always on and monitoring for problems. When the
inference engine detects an anomaly, the wireless network is
powered up and the anomaly plus sensor data are sent to the
cloud and the end user is notified.

This lower power always on sensing and powering the radios only
when required results in significantly longer battery life, resulting
in up to 5 years on a single set of batteries under certain
conditions.

TinyML + the low power MCU and Sensors enable the peel and
stick battery powered sensor solution at the far edge, preventing
the need for an always on radio connection to run analysis of the
sensor data in the cloud.

But how do we install, monitor, and manage this network of
intelligent sensors at massive scale, in billions of units?

Deploying TinyML Sensors at Scale

Massively Scalable End-to-end AIoT Solution

Deploying The Model

Once the model is trained and tested on the data, it is packaged
and compressed and sent using over-the-air (OTA) update to the
far edge device.

Since the device is battery operated, the device checks in at the
configured update interval and receives a notification that the
model update is available. The model is downloaded, the
inference engine is started, and the training data collection is shut
down.

Now the inference engine takes over and runs the model on live
data at the far edge and will only transmit significant events
classified by the inference engine to the cloud.

Flexible Model Development Workflows

Model may be developed two ways:

- Historical data provided by the user
- Live data recorded from the device

Data Collection

Data collection for the unsupervised model begins when the
sensor is installed. The AI workflow configures the sensors to
record data, define the data collection, and the end user is notified
when an anomaly condition is present.

Once the data collection is complete, the model is trained and is
ready to deploy.

Real-life Use Case

Predictive Maintenance Demo
Anomaly Detection w/ TF Lite Micro on ARM M4

Once the sensor is installed on the asset, the sensors to train are
selected and anomaly detection is enabled. Data collection
begins and the information is uploaded to the cloud.

Once enough data is collected, the model is trained and deployed
to the inference engine in the far edge device.

How does AI Workflow handle supervised vs unsupervised
models?

Cloud Platform

Our cloud platform houses the AI workflow, as well as device
management and functions to notify the end user when an
anomaly is present.

When an anomaly condition is present, the anomaly trigger is
sent to the cloud. From there, a chain of actions may be
configured including notifying key personnel to address the
problem.

Predictive models allow scheduling repairs preventing costly
emergency repairs.

- DEVICE MANAGEMENT
 - Device provisioning, sensor profile, configuration, discovery, OTA, etc.
- USER MANAGEMENT
 - Account registry, multi-tenancy, configuration & administration
- ASSET MONITORING
 - Remote access, on-site repairs, alerts, dashboard & reports
- AI WORKFLOWS FOR LTE MICRO
 - Training, model development, inference, display on far edge sensor

No cloud connection
Upload data to cloud
Anomaly Detected

How do we train and develop these TinyML models?

TinyML AI Workflow

Managing a large scale deployment of intelligent sensors
requires an AI workflow.

Once the sensor is installed on the asset, the sensors to train are
selected and anomaly detection is enabled. Data collection
begins and the information is uploaded to the cloud.

Once enough data is collected, the model is trained and deployed
to the inference engine in the far edge device.

How does AI Workflow handle supervised vs unsupervised
models?

Real-life Use Case

Predictive Maintenance Demo
Anomaly Detection w/ TF Lite Micro on ARM M4

Once the sensor is installed on the asset, the sensors to train are
selected and anomaly detection is enabled. Data collection
begins and the information is uploaded to the cloud.

Once enough data is collected, the model is trained and deployed
to the inference engine in the far edge device.

How does AI Workflow handle supervised vs unsupervised
models?

Real-life Use Case

Predictive Maintenance Demo
Anomaly Detection w/ TF Lite Micro on ARM M4

Once the sensor is installed on the asset, the sensors to train are
selected and anomaly detection is enabled. Data collection
begins and the information is uploaded to the cloud.

Once enough data is collected, the model is trained and deployed
to the inference engine in the far edge device.

How does AI Workflow handle supervised vs unsupervised
models?